2019新型冠狀病毒比別的病毒更頻繁的突變,但是差別都不大,一直到D614G出現。
什麼是D614G?
作者:SPQR10Binte altaf, CC BY-SA
它的突變發生地點在614,它影響的是病毒上的棘蛋白。這裡的突變能比較容易接上被感染者的接收器,使得人比較容易被感染。
它什麼時候突變的?
其實在疫情一開始時,它就已經突變了,歐、美大部分的人都是受到D614G的感染。所以研究發現它已是現在世上最流行的一支2019新型冠狀病毒了。
它會不會讓人病得更嚴重?
雖然它傳染力變強,但現在研究並沒有發現它會讓人病得更嚴重。
那為什麼我們要那麼緊張?
我們會緊張,是因為它已經開始出現在東南亞了,包括菲律賓和馬來西亞。而D614G這支病毒比原本在亞洲傳播的病毒,傳染力要強了許多,所以如果D614G在東南亞擴散開來,預期東南亞各國的傳染率將要大大升高。
它會不會影響疫苗的研發?
雖然突變處可能會影響免疫系統對病毒的偵察能力,但是現在的研究結論認為它不影響整個病毒結構,所以應該不會影響疫苗的發展進度。
1) Endo, A., Abbott, S., Kucharski, A.J., and Funk, S.; Centre for the Mathematical Modelling of Infec- tious Diseases COVID-19 Working Group (2020). Estimating the overdispersion in COVID-19 trans- mission using outbreak sizes outside China. Well- come Open Res. 5, 67.
2) Hu, J., He, C.-L., Gao, Q.-Z., Zhang, G.-J., Cao, X.-X., Long, Q.-X., Deng, H.-J., Huang, L.-Y., Chen, J., Wang, K., et al. (2020). The D614G mu- tation of SARS-CoV-2 spike protein enhances viral infectivity and decreases neutralization sensitivity to individual convalescent sera. bio- Rxiv, 2020.06.20.161323.
3) Korber, B., Fischer, W.M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E.E., Bhattacharya, T., Foley, B., et al. (2020). Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 vi- rus. Cell 182, this issue, 812–827.
4) Lloyd-Smith, J.O., Schreiber, S.J., Kopp, P.E., and Getz, W.M. (2005). Superspreading and the effect of individual variation on disease emergence. Na- ture 438, 355–359.
5) Lorenzo-Redondo, R., Nam, H.H., Roberts, S.C., Simons, L.M., Jennings, L.J., Qi, C., Achenbach, C.J., Hauser, A.R., Ison, M.G., Hultquist, J.F., and Ozer, E.A. (2020). A Unique Clade of SARS- CoV-2 Viruses is Associated with Lower Viral Loads in Patient Upper Airways. medRxiv, 2020.05.19.20107144.
6) Marzi, A., Chadinah, S., Haddock, E., Feldmann, F., Arndt, N., Martellaro, C., Scott, D.P., Hanley, P.W., Nyenswah, T.G., Sow, S., et al. (2018). Recently Identified Mutations in the Ebola Virus- Makona Genome Do Not Alter Pathogenicity in An- imal Models. Cell Rep. 23, 1806–1816.
7) Ozono, S., Zhang, Y., Ode, H., Seng, T.T., Imai, K., Miyoshi, K., Kishigami, S., Ueno, T., Iwatani, Y., Suzuki, T., et al. (2020). Naturally mutated spike proteins of SARS-CoV-2 variants show differential levels of cell entry. bioRxiv, 2020.06.15.151779.
8) Wagner, C., Roychoudhury, P., Hadfield, J., Hod- croft, E.B., Lee, J., Moncla, L.H., Mu ̈ ller, N.F., Beh- rens, C., Huang, M.-L., Mathias, P., et al. (2020). Comparing viral load and clinical outcomes in Washington State across D614G mutation in spike protein of SARS-CoV-2. https://github.com/blab/ ncov-D614G.
9) Korber, B. & Fischer, Will & Gnanakaran, S. & Yoon, H. & Theiler, James & Abfalterer, W. & Hengartner, N. & Giorgi, Elena & Bhattacharya, Tanmoy & Foley, Brian & Hastie, K.M. & Parker, M.D. & Partridge, D.G. & Evans, C.M. & Freeman, T.M. & Silva, T.I. & McDanal, C. & Perez, L.G. & Tang, H. & Wyles, M.D.. (2020). Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell.
10) Eaaswarkhanth M. 2020. Could the D614G substitution in the SARS-CoV-2 spike (S) protein be associated with higher COVID-19 mortality? International Journal of Infectious Diseases.
11) MedRxiv. 2020. D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization. https://www.medrxiv.org/content/10.1101/2020.07.22.20159905v1
12) Grubaugh ND. 2020. Making Sense of Mutation: What D614G Means for the COVID-19 Pandemic Remains Unclear. Cell.